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COMPREHENSIVE AI-BASED SYSTEM FOR KPI 
ASSESSMENT IN IVF LABORATORIES: 
DEVELOPMENT AND IMPLEMENTATION

SUMMARY 
Background: In vitro fertilization (IVF) success heavily relies on laboratory Key Performance In-
dicator (KPI) evaluation systems, but traditional analytical methods often fail to provide deep, 
actionable insights into KPI establishment and measurement.
Objective: This study aimed to develop a comprehensive AI-based KPI evaluation system for IVF 
laboratories, focusing on a novel Deep Neural Network (DNN) model for predicting clinical preg-
nancy rates (CPR).
Materials and Methods: We analyzed 3,888 IVF treatment protocols, utilizing consensus KPIs 
from guidelines, various analytical methods, such as descriptive statistics, time series analysis, 
machine learning algorithms, and a custom-developed DNN model.
Results: The DNN model demonstrated a high level of accuracy, with an AUC of 0.79 and a PRC 
of 0.69 in predicting CPR. Importantly, there was no significant difference (p < 0.05) between 
predicted and actual CPR, reaffirming the model’s reliability. The model’s performance was on 
par with PGT-A-tested embryo transfers and other commercial AI solutions in IVF, including time-
laps systems. External validation in independent clinics yielded an AUC of 0.73, consistent with 
cross-validation reports from multiple clinics. The application of the DNN model in 4 clinics for 
quality assurance identified variations in individual staff performance, enabling targeted mentor-
ing and quality improvement, further reinforcing the system’s reliability and reproducibility.
Conclusion: The developed AI-based KPI assessment system is a significant leap forward for IVF 
analytics. It provides a comprehensive, accurate, and reproducible tool for internal quality as-
surance, external clinic audits, and individual staff competency assessment. By shifting the focus 
from traditional embryo selection to a deeper understanding of parameters influencing success-
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ful IVF outcomes, it opens the door to more personalized and effective infertility treatments, 
offering hope for the future of IVF.
Keywords: in vitro fertilization; quality assurance; artificial intelligence; deep neural networks; 
key performance indicators; clinical pregnancy prediction; predictive modeling.

INTRODUCTION
In vitro fertilization (IVF) is a complex and critical process in assisted reproductive technology. The 
success of it heavily relies on the expertise and performance of embryologists. Implementing a 
robust Key Performance Indicator (KPI) evaluation system is essential to ensure optimal outcomes 
and continual improvement. This study aims to develop a comprehensive KPI evaluation system 
for an IVF clinic’s embryology laboratory using artificial intelligence (AI) algorithms, detailing the 
data analysis process, its importance, and the advantages of such an approach.

Historically, the field of IVF has relied on a limited set of analytical tools for assessing labo-
ratory performance and patient outcomes. Conventional data analysis typically involves basic 
descriptive statistics (means, medians, standard deviations), simple success rate calculations, and 
the occasional use of basic inferential statistics. While these methods provide a fundamental 
understanding of performance, they often fail to offer deep, actionable insights into the com-
plex dynamics of IVF processes. A robust, continuous quality control system is paramount in the 
high-stakes field of assisted reproduction. Our AI-based solutions can find a place in this system 
as independent, reproducible, and highly effective algorithms for analytics and data-driven deci-
sion-making approaches.

In recent decades, neural networks and machine learning (ML) models have become vital tools 
in various fields, including computer vision, natural language processing, recommender systems, 
medical diagnostics, and the field of IVF.1 These models serve as the foundation for creating algo-
rithms capable of extracting complex dependencies from data, making predictions, and making 
decisions based on these dependencies. With that AI-based approach, we can transform our 
descriptive retrospective analytics into predictive prospective research. In some cases, neural 
networks can identify a broader spectrum of associations than other statistical methods, thanks 
to their ability to recognize highly nonlinear associations among input parameters. Therefore, the 
critical point of our study was the establishment of a new approach to KPI analytics utilizing deep 
learning network (DNN) architecture to predict the treatment cycle result – clinical pregnancy 
achievement (CPR).

The importance of the laboratory stage in IVF is detailed in consensus resolutions for quality 
control and the assessment of KPIs, constituting an integral part of internal quality control (QC) 
according to international standards.2 Nevertheless, determining such indicators to identify po-
tential problem areas in laboratory work is not always straightforward, and clear recommenda-
tions on which KPIs need improvement for real increases in successful IVF protocol numbers are 
lacking.3,4 KPIs provide a comprehensive view of the embryologist’s performance at various stages 
of the IVF process, allowing for a nuanced understanding of success rates and potential areas for 
improvement. In this work, we utilized consensus KPIs as a tool for outcome prediction and labo-
ratory performance measurement.
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METHODS
To create the KPI assessment system, we selected the Vienna Consensus2 and the Maribor Con-
sensus5 as reference quality indicators, with adjustments for determining the total number of 
good-quality blastocysts and individualized KPI calibration according to patient population data 
from the publication by Zacà et al.6 and the ASPIRE guidelines.7

We used retrospective data of 3888 IVF treatment protocols with known outcomes in “The 
Georgian-German Reproduction Center,” Tbilisi, Georgia, from January 2022 to January 2024 to 
develop a data set for ML training and 394 protocols for model testing. For validation, a PGT-A 
dataset of 1600 cycles was used. For external model validation, we used data from 2 independent 
ART centers in Russia. All protocols with missing data values were discarded from the study.

Patient informed consent for that study was unnecessary because only retrospective and fully 
de-identified data from embryo development has been used. It is entirely non-invasive for pa-
tients or their embryos (no medical intervention was performed on the subject, and no biological 
samples from the patient were collected to develop that model). The ESHRE recommendations 
and Gardner blastocyst grading system were used for embryo evaluation, in which “good blasto-
cysts” were identified as Bl3BB and higher grades.

Python 3.11, Scikit-learn 1.4.2, and Sklearn 1.4 were used to implement machine learning 
models and statistical modeling in DataSpell 2024.1.3 IDE. The neural network model has been 
developed and executed in the GPU PyCharm 17.0.10 environment with the Tensorflow 2.15.0 
and Keras library 2.14.0. DNN calibration was performed using CalibratedClassifierCV from sci-kit-
learn, which applies logistic regression to align probabilities. A comparative analysis of prediction 
errors was conducted with area under the receiver operating characteristic curve (AUC), accura-
cy, F-1 score, specificity (actual negative rate), sensitivity (recall), precision (positive prediction 
value), precision-recall curve (PRC) and Matthews Correlation Coefficient (MCC).

Statistical analysis of individual KPIs was conducted using StatTech software version 3.0.6. De-
scriptive statistics were chosen based on data distribution: for customarily distributed quantita-
tive indicators, mean (M) and standard deviation (SD) with 95% confidence intervals (CI) were 
used, while median (Me) and interquartile range (IQR: Q1-Q3) were employed for non-normally 
distributed data, as determined by the Shapiro-Wilk test. The direction and strength of correla-
tion between two quantitative variables were evaluated using Spearman’s rank correlation coef-
ficient. A p-value < 0.05 was used as the significance threshold for statistical analysis. Comparison 
of groups based on quantitative indicators was performed using one-way analysis of variance 
(ANOVA) for normally distributed data or the Kruskal-Wallis test for non-normally distributed 
data, followed by post hoc comparisons when significant differences were detected.

RESULTS AND DISCUSSION
Data preparation
The first step in developing our KPI evaluation system was to collect and prepare the relevant 
data. From the protocols of treatment cycles, we selected those executed by the current team 
of embryologists present in the laboratory. We established clear criteria for excluding protocols, 
including incomplete data, information provision errors, and procedures performed by multiple 
embryologists. We chose protocols that satisfied the Vienna consensus criteria to prepare the 
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dataset for individual staff KPI analysis. Our statistical analysis revealed that all parameters, ex-
cept the patient’s age, exhibited distributions different from usual (R-test), and according to the 
Dickey-Fuller criterion, their time series were non-stationary (p > 0.05). We analyzed the work-
load distribution in the laboratory among staff based on input (number of oocytes used in pro-
cedures) and output (number of obtained blastocysts) parameters. This analysis revealed no sig-
nificant differences (p > 0.05) in pairwise comparisons between all embryologists. This approach 
to data preparation is crucial for the validity and reliability of our subsequent KPI evaluation and 
analysis, allowing us to draw meaningful Conclusion about the performance of our IVF laboratory 
and individual embryologists.

Descriptive statistical analysis
We conducted descriptive statistical analysis to gain insights into the overall performance and 
variability of the KPIs. The mean patient age was 34 (SD = 5.7, min 18, max 49) years; the number 
of follicles 16.3 (SD = 9.64); OCC number 13.04 (SD = 7.32); number of oocytes used for fertiliza-
tion 11.19 (SD = 6.68); 2pN number 8.15 (SD = 5.37), number of cleavaged embryos 8.12 (SD = 
5.36); total number of blastocyst D5-D6 3.33 (SD = 3.43); number of good quality blastocyst 3.14 
(SD = 3.67); fertilization rate 0.74 (SD = 0.31); cleavage rate 0.99 (SD = 0.4); reasonable blastocyst 
rate 0.40 (SD = 0.35); oocyte retrieval rate 0.78 (SD = 0.5).

The KPIs we analyzed provide a comprehensive view of embryologists’ performance at various 
stages of the IVF process, allowing for a nuanced understanding of success rates and potential 
areas for improvement. Our quarterly analysis for 2022-2023 focused on input parameters for the 
laboratory, with particular attention to the main criterion of properly selected stimulation - the MII 
rate. This analysis revealed stability in the obtained mature oocytes, with a median of 0.87 and an 
interquartile range (Q1-Q3) of 0.855-0.893. These values consistently surpassed the Maribor con-
sensus competency threshold of≥74% and a target value of ≥90%.5 Notably, we observed invari-
ance in these rates across the studied years. Furthermore, we conducted a comparative analysis of 
the main clinic KPIs between IVF and ICSI procedures. Our statistical tests revealed no significant 
differences in several key areas: the fertilization rate (U statistic = 4687.0, p = 0.2945), blastocyst 
formation rate (U statistic = 6096.5, p = 0.0528), good-quality blastocyst formation rate (U statistic 
= 4920.5, p = 0.9031), and availability of MII oocytes (U statistic = 5404.0, p = 0.8479). These find-
ings suggest consistency in performance across different fertilization techniques employed in our 
clinic, providing valuable insights into the uniformity of our laboratory processes and outcomes.

Individual staff performance analysis
Our analysis of individual embryologists’ performance revealed no statistically significant differ-
ences (p > 0.05) in achieving KPIs (IVF polyspermy rate, ICSI degradation rate, ICSI and IVF fertiliza-
tion rates, and reasonable blastocyst rate) across selected treatment cycles. Further examination 
of the distribution of individual embryologist KPIs yielded promising results. The median values 
for fertilization and blastocyst development rates exceeded the Vienna consensus benchmark for 
all conducted cycles.2

Moreover, these parameters’ quarterly values (Q1-Q3) were consistently above the estab-
lished competency level. This analysis provides a valuable tool for comparing performance across 
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different embryologists within our team. It allows us to identify top performers whose techniques 
and practices might be shared as best practices. Equally important, it helps us recognize individu-
als who may benefit from additional support or training, ensuring continuous improvement and 
maintaining high standards throughout our embryology laboratory.

Time-series analysis
While descriptive statistics provide a quick overview of the central tendencies and spread of KPIs, 
allowing for easy identification of typical performance levels and outliers, they fall short of cap-
turing the dynamic nature of these metrics over time. We employed moving averages with con-
fidence intervals for each KPI to address this limitation and gain a time-series understanding of 
changes in KPI shifts. This approach helps identify trends and patterns in KPI performance over 
time, with the confidence intervals offering insight into the stability and reliability of these trends. 
We analyzed the laboratory’s KPIs stability, focusing on their prognostic influence on pregnancy 
rates.

Our observations revealed stable oocyte retrieval rates until the third quarter of 2023, fol-
lowed by a decline in August 2023. Concurrently, we noted a significant decrease (p < 0.05) in 
the blastocyst formation rate, indicating a reduced probability of forming high-quality blastocysts 
from each retrieved oocyte. The period from early 2022 to the second quarter of 2022 showed a 
clear trend of increasing oocyte fertilization rates and blastocyst formation rates, correlating with 
an increased embryo implantation rate observed during this time. A similar trend of increased 
blastocyst formation rate was observed in 2023. However, while the decrease in blastocyst forma-
tion rate in the third quarter of 2023 may appear notable when comparing quarterly averages be-
tween years, this decrease is not statistically significant (p > 0.05) and amounts to less than 15%.

This finding suggests that no substantial changes in laboratory conditions reduce the overall 
number of high-quality blastocysts. Our time-series analysis thus provides a more nuanced un-
derstanding of KPI fluctuations, allowing us to distinguish between meaningful trends and normal 
variations in laboratory performance over time.

Regression analysis
We applied ML methods to our dataset to gain a deeper understanding of our data dependencies. 
After conducting regression analysis using the method of least squares (OLS) for the good blasto-
cyst rate, the following statistical data were obtained: the R-squared (Coefficient of Determina-
tion) was 0.393. The F-statistic value was 322.6, and the significance level (F-statistic) was shallow 
(< 0.0001), leading us to conclude that the model was statistically significant. The coefficient for 
the number of blastocysts was 0.0670, suggesting the expected change in the frequency of form-
ing blastocysts when the number of blastocysts increases by one. The Durbin-Watson coefficient 
was close to 2, indicating the absence of significant autocorrelation in the model’s residuals and 
the correctness of the analytical system.

According to the regression analysis, negative dependencies of the blastocyst formation rate 
on the number of oocytes retrieved and the total number of zygotes were identified, which aligns 
with analytics from other IVF centers. Notably, the correlations of blastocyst formation rate with 
the number of retrieved oocytes, the number of inseminated oocytes, and 2pN were not sta-
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tistically significant (p = 0.841, p = 0.842, p = 0.880, respectively). A substantial (p < 0.05) linear 
dependency was found with the total number of blastocysts. This is an essential indicator of lab-
oratory parameter stability, as an increase in the total number of blastocysts does not deteriorate 
their quality but increases the probability (proportion) of forming high-quality blastocysts.

KPIs change forecasting
Calculating the laboratory’s KPIs during the data preparation procedure allows for the utilization 
of ML methods to forecast KPI changes with a justified mathematical model. This approach helps 
determine reference threshold values for quality indicators and identify growth zones for perfor-
mance improvement. The Seasonal AutoRegressive Integrated Moving Average (SARIMA) model 
is a time series method widely used for forecasting data with seasonal fluctuations. To achieve 
this, we integrated the SARIMA model into the laboratory’s KPI calculation process to identify the 
structure of data changes, including seasonal fluctuations, trends, and noise. 

This ML model involves determining the orders of autoregression (p), differencing (d), and 
moving average (q) for the time series components, as well as seasonal orders (P, D, Q). The SA-
RIMA model has been trained on historical data to forecast future performance indicator values 
based on past observations. These forecasts can calculate target KPIs for the individual laboratory 
and analyze its effectiveness. Subsequent comparison of forecasted KPIs with actual data forms 
the basis for a systematic analysis of laboratory efficiency. This approach to internal quality con-
trol provides the laboratory with a tool for more predictable process management, early detec-
tion of potential issues, and optimization of operations based on data and analytics.

Neural network-based approach
The leading performance indicator of the IVF unit is the clinical pregnancy rate (CPR). The primary 
challenge in calculating CPR is determining its competence value for each patient population or 
individual case. According to Maribor’s consensus, “Competence and benchmark values of clini-
cal pregnancy rate should be set for a specific local context”.5 Unfortunately, this is not a simple 
task for an individual IVF center.

Most ML models applied in the field of IVF are based on regression and logistic regression 
algorithms to identify relationships between the target variable and input parameters.8 The tar-
get variable typically represents the outcome metric of clinic success, such as the frequency of 
achieving clinical pregnancy, based on fitting data from patient medical history.9 However, most 
models used for evaluating CPR are based on patient data and their previous IVF treatment cy-
cles, often failing to track patterns in the changes of quality laboratory parameters relevant to the 
final transfer outcome.10

We developed and implemented our own Deep Neural Network (DNN) within a KPI framework 
for CPR prediction to address this. This model was trained on our data, with a mean CPR per em-
bryo transfer of 61.93%. The metrics for the model after fitting were: test accuracy = 0.72, AUC = 
0.79, PRC = 0.69, precision = 0.72, recall = 0.52, F1 score = 0.61, and MCC = 0.41. After completing 
the full training process, the predicted CPR was 56.18%, which showed no significant difference 
(p = 0.114) from the actual CPR in our clinic. Utilizing this DNN model, we can compare actual and 
predictive CPR across time intervals to understand the likelihood of achieving pregnancy. With 
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our neural network model, we established a lower threshold limit for the probability of clinical 
pregnancy occurrence for each year of operation. A significant difference (p < 0.05) was noted for 
patients in 2021-2022 years compared to 2023 year, with a decrease in the likelihood of clinical 
pregnancy ranging from 10% at the beginning of the year to 20% after the third quarter of 2023. 
The theoretically calculated probabilities using the DNN model align with the actual CPR reports 
in these specified time intervals. In other words, our KPI calculation and DNN model prediction 
analysis demonstrate that the decrease in CPR from the third quarter of 2023 is a process not di-
rectly related to the quality of stimulation (patient preparation) or laboratory work but depends 
on the patient’s initial clinical data.

Using the independent ML algorithm XGBoost, we confirmed the correlation between select-
ed parameters and pregnancy occurrence in our DNN model, highlighting their significance in 
predicting the outcome of embryo transfer. The parameters identified through linear regression 
analysis can be considered critical features for developing our DNN for predicting CPR. Utilizing 
them as the foundation for training the neural network allows for more accurate and reliable 
forecasting of the probability of clinical pregnancy. This approach ensures a more precise tracing 
of the mutual influence of laboratory parameters and their impact on the outcome of embryo 
transfer as part of the internal quality control system. Ultimately, our DNN model will provide 
clinic staff and patients with more precise and individualized predictions, contributing to more 
effective infertility treatment outcomes based on laboratory quality and performance indicators.

After training the neural network model, we utilize the probabilities obtained from it and apply 
logistic regression for calibration. This creates a model that takes outputs from the DNN and cal-
ibrates them to probability predictions, improving model performance. As a result, we achieved 
precision = 0.83 and recall = 0.66.

We chose linear regression to analyze the probabilities predicted by the DNN. The analysis yield-
ed a mean squared error (MSE) value of 0.0027, indicating that our model has a deficient error. This 
suggests that the model’s predictions are close to the actual values of pregnancy probability. The co-
efficient of determination (R-squared) was found to be 0.937, indicating that approximately 93.7% 
of the variance in pregnancy probability is explained by the independent variables in the model.

Explanation of DNN results with clustering analysis
To deepen our understanding of the predictive capabilities of the developed DNN for IVF preg-
nancy probability, we conducted a k-means clustering analysis on the model’s predicted output 
values across a dataset to identify inherent patterns in the expected pregnancy probabilities, 
offering insights into the diverse patient profiles represented within the dataset. The clustering 
process partitioned the cases into three distinct clusters, each characterized by unique combi-
nations of predictive features. For the effectiveness analysis of our DNN in predicting pregnancy 
probability in IVF, we compared predicted clusters with clusters based on accurate data on preg-
nancy occurrence in our clinic.

This comparison allowed us to identify consistency between predicted and real results and 
differences that may indicate essential aspects of the data. Both clusters contained similar fea-
tures characterizing stimulation quality indicators and patient clinical data, such as age, number 
of follicles, and number of oocytes. We also observed similar trends in the distribution of feature 
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weights characterizing pregnancy probability. This comprehensive analysis demonstrates the ro-
bustness of our DNN model in predicting IVF pregnancy probability, providing valuable insights 
for model explanation and clinical decision-making and enhancing the effectiveness of quality 
assurance (QA) programs.

DNN validation
To understand the predictive capability of our DNN model, we selected a reference group from 
our dataset — single embryo transfer of euploid embryos after preimplantation genetic testing for 
aneuploidy (PGT-A). This selection achieved an initial balance of classes in our patient subpopula-
tion, with an average implantation rate of 54.6%. An analysis of CPR in these protocols revealed a 
0.27 error in predicting clinical pregnancy rate, with an AUC = 0.67 (CI = 0.62-0.75) and an accuracy 
of 0.77. The same metrics (AUC = 0.67) were obtained for embryonic and clinical outcomes of 
blastocysts with stratified AI scores from iDAScore EmbryoscopeTM 11 and with other CNN models 
and commercial AI solutions in IVF: AUC = 0.65 for fresh and frozen transfers and 0.63 for euploid 
transfers.12 Consequently, the prediction capability of our DNN model can be used as an entirely 
noninvasive additional method for embryo selection, similar to other time-lapse systems.13

The external validation of our model in 2 independent clinics had comparative results of AUC 
= 0.73 with a hybrid AI model 3D-ResNet based on several TL technologies (MIRI, GERI, and EM-
BR-EMBR+) in a cross-validation report from 14 clinics (mean AUC = 0.73) and with video models 
along (AUC = 0.68) from the same data.14

Bayesian method application for prospective approach
However, all these predictions were performed on retrospective data. The Bayesian method of-
fers a robust framework for integrating historical data with real-time predictions from neural 
networks, enabling a transition from retrospective to prospective analysis. We utilized it to en-
hance the prediction accuracy of IVF cycle success rates. We defined the prior distribution based 
on accurate data from IVF cycle successes in 2023-2024. The historical data comprised clinical 
pregnancy rates and the number of transfers per cycle, transformed into probabilities for each 
quarter. The quarterly probabilities were as follows: 0.55, 0.55, 0.49, 0.59, and 0.47. A predicted 
success probability of 0.64 was also obtained from the DNN model for a new cycle.

We initialized our Bayesian model with prior parameters based on historical success and fail-
ure counts, specifically with prior successes (α) set to 188 and prior failures (β) set to 106. These 
priors encapsulate our initial belief about the success rate derived from extensive historical data. 
Subsequently, we updated our posterior distribution iteratively using the quarterly probabilities. 
We calculated the equivalent success and failure counts for each probability by scaling the prob-
abilities to a standardized sample size. Following integrating all quarterly probabilities, we incor-
porated the neural network’s predicted success probability for the upcoming cycle. This was done 
by adjusting the posterior parameters again and adding the expected probability as an additional 
observation. The final posterior parameters were then used to derive the predicted success rate 
and associated credible interval for the next IVF cycle. The resulting posterior distribution yielded 
an expected success rate of approximately 0.58 (58% CPR chance) for the next cycle, with CI = 
0.55 - 0.61.
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This updated distribution reflects a more accurate estimate of the success rate of the treat-
ment cycle for the future and can help evaluate our observations and CPR expectations. With 
the dynamic updating of new data, the Bayesian method allows for the seamless integration of 
historical data and real-time predictions, offering a precise measure of the uncertainty associated 
with forecasts. This makes the model more robust and adaptive. The combination of the DNN and 
Bayesian frameworks provides a robust, adaptable, and precise approach to predictive modeling, 
making it an invaluable tool in the ongoing effort to optimize IVF treatment quality control and 
data analytics.

Quality management with the help of DNN
The developed neural network model can serve as a unique and comprehensive tool for internal 
quality control of laboratory parameters and clinic performance by setting lower limits of CPR prob-
ability. In many cases, it is challenging to differentiate between patients seeking assistance from 
various doctors within the clinic, making the specification of competency boundaries in achieving 
quality targets quite blurry and uncertain. However, our DNN employs a grouped analysis of proto-
cols, allowing their aggregation based on temporal criteria and individual staff members.

We compared the actual clinical pregnancy rates achieved individually by each reproduc-
tive specialist during 2023 in external audit programs across four different IVF centers. Through 
this approach, we identified three doctors (No. 1, No. 2, and No. 3) with actual CPRs of 34.0%, 
42.5%, and 40.5%, respectively, which were higher than the theoretically calculated thresholds 
of 33.60%, 33.33%, and 38.01% for their patient groups (p > 0.05). Additionally, we identified 
three doctors (No. 4, No. 5, and No. 6) whose transfer outcomes (9.60%, 24.82%, 16.01%) require 
serious monitoring and verification, as their actual CPRs were significantly lower (p < 0.01) than 
those predicted by the model (33.53%, 33.33%, 37.25%) for these staff members. Based on that, 
it can be concluded that the competency level of doctors No. 4, 5, and 6 still does not allow them 
to work independently. Every procedure they conduct requires careful monitoring and mentoring 
from more experienced colleagues, such as specialists No. 1, 2, and 3 within the same center.

Thus, the developed DNN is an integral, accurate, and reproducible element of QA that can be 
used for both internal QA and external clinic audits, as well as for determining the individual compe-
tency of the staff. With its help, it is possible to define the boundaries of personal competency and 
identify staff members whose work requires increased scrutiny and those who can perform such 
monitoring. The importance of this analysis lies in the fact that the role of a mentor can be assigned 
to existing clinic staff without the need for additional external experts or auditors. This significantly 
simplifies organizational matters and reduces direct financial expenditures on staff training.

CONCLUSION
Our research represents a significant leap forward in applying data analytics to IVF practice. By in-
tegrating diverse analytical methods, we have developed a comprehensive framework that goes 
far beyond traditional descriptive statistics. This approach includes advanced KPI calculations 
personalized for individual staff members, time series analysis with moving averages, clustering 
and principal component analysis (PCA) for embryologist performance using machine learning 
algorithms, linear regression analysis for understanding KPI relationships, and neural network 
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prediction for the result of IVF treatment procedures. This multifaceted approach allows a deeper 
understanding of laboratory performance, embryologist efficiency, and process stability. It can be 
applied as a comprehensive quality management system in the embryology laboratory. It serves 
as a first step in integrating AI in IVF, shifting from the traditional concept of selecting the best 
embryo to understanding the parameters involved in successful outcomes.
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